Consecutive evaluation of Euler sums

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consecutive Evaluation of Euler Sums

is the Riemann zeta function. The numbers S(r ,p) for p+r odd were explicitly evaluated for the first time in [3]. As commented in [3], there is strong evidence that forp+r even S(r ,p) can be evaluated only in some particular cases: S(p,p), S(2,4), S(4,2). A powerful method for evaluation of Euler sums, based on the residue theorem, was presented in [7]. The purpose of this note is to describe...

متن کامل

Evaluation of Euler-zagier Sums

We present a simple method for evaluation of multiple Euler sums in terms of single and double zeta values. 2000 Mathematics Subject Classification. 11M99, 40B05.

متن کامل

Evaluation of Triple Euler Sums

Let a, b, c be positive integers and define the so-called triple, double and single Euler sums by

متن کامل

Experimental Evaluation of Euler Sums

In response to a letter from Goldbach, Euler considered sums of the form ∞ ∑ k=1 ( 1 + 1 2m + · · ·+ 1 km ) (k + 1)−n for positive integers m and n. Euler was able to give explicit values for certain of these sums in terms of the Riemann zeta function. In a recent companion paper, Euler’s results were extended to a significantly larger class of sums of this type, including sums with alternating...

متن کامل

Explicit evaluation of Euler sums

In response to a letter from Goldbach, Euler considered sums of the form where s and t are positive integers. As Euler discovered by a process of extrapolation (from s + t 13), h (s; t) can be evaluated in terms of Riemann-functions when s + t is odd. We provide a rigorous proof of Euler's discovery and then give analogous evaluations with proofs for corresponding alternating sums. Relatedly we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2002

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171202007871